| Ques                                       | tion Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Marks                                                             | AOs    |
|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------|
| 1 (a                                       | Deduces that the gradient of line $l_2$ is $-\frac{5}{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | B1                                                                | 1.1b   |
|                                            | Complete attempt to find the equation of line $l_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                   |        |
|                                            | e.g., $y - 0 = -\frac{1}{m_1}(x - 8)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | M1                                                                | 1.1b   |
|                                            | 5x + 3y = 40 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A1*                                                               | 2.1    |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (3)                                                               |        |
| (b                                         | Deduces $A(-10,0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | B1                                                                | 2.2a   |
|                                            | Attempts to solve $y = \frac{3}{5}x + 6$ and $5x + 3y = 40$ simultaneously to find the <i>y</i> coordinate of their point of intersection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M1                                                                | 1.1b   |
|                                            | y coordinate of C is $\frac{135}{17}$ o.e.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A1                                                                | 1.1b   |
|                                            | Complete attempt at area $ABC = \frac{1}{2} \times (8 + "10") \times "\frac{135}{17}"$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | dM1                                                               | 2.1    |
|                                            | $=\frac{1215}{17}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A1                                                                | 1.1b   |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                   |        |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (5)                                                               |        |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                   | narks) |
| Notes                                      | 5:<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                   | narks) |
| (a)                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                   | narks) |
| (a)                                        | S:<br>Deduces that the gradient of line $l_2$ is $-\frac{5}{3}$ (accept $-\frac{5}{3}x$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                   | narks) |
| (a)<br>B1:                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (8 n                                                              | narks) |
| (a)<br>B1:<br>M1:                          | Deduces that the gradient of line $l_2$ is $-\frac{5}{3}$ (accept $-\frac{5}{3}x$ )<br>Complete attempt to find the equation of line $l_2$ using $B(8,0)$ and a changed<br>If using $y = mx + c$ they must be using a changed gradient and proceed as fa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>(8 n</b><br>l gradient.                                        | narks) |
| (a)<br>B1:<br>M1:                          | Deduces that the gradient of line $l_2$ is $-\frac{5}{3}$ (accept $-\frac{5}{3}x$ )<br>Complete attempt to find the equation of line $l_2$ using $B(8,0)$ and a changed<br>If using $y = mx + c$ they must be using a changed gradient and proceed as fa<br>Clear work leading to the given answer of $5x + 3y = 40$ with no errors seen.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (8 m<br>l gradient.<br>r as $c = \dots$                           |        |
| (a)<br>B1:<br>M1:                          | Deduces that the gradient of line $l_2$ is $-\frac{5}{3}$ (accept $-\frac{5}{3}x$ )<br>Complete attempt to find the equation of line $l_2$ using $B(8,0)$ and a changed<br>If using $y = mx + c$ they must be using a changed gradient and proceed as fa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (8 m<br>l gradient.<br>r as $c = \dots$                           |        |
| (a)<br>B1:<br>M1:                          | Deduces that the gradient of line $l_2$ is $-\frac{5}{3}$ (accept $-\frac{5}{3}x$ )<br>Complete attempt to find the equation of line $l_2$ using $B(8,0)$ and a changed<br>If using $y = mx + c$ they must be using a changed gradient and proceed as fa<br>Clear work leading to the given answer of $5x+3y = 40$ with no errors seen.<br>There is a requirement to "show that" so the must be at least one intermediate                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (8 m<br>l gradient.<br>r as $c = \dots$                           |        |
| (a)<br>B1:<br>M1:<br>A1*:                  | Deduces that the gradient of line $l_2$ is $-\frac{5}{3}$ (accept $-\frac{5}{3}x$ )<br>Complete attempt to find the equation of line $l_2$ using $B(8,0)$ and a changed<br>If using $y = mx + c$ they must be using a changed gradient and proceed as fa<br>Clear work leading to the given answer of $5x + 3y = 40$ with no errors seen.<br>There is a requirement to "show that" so the must be at least one intermediat<br>$y - 0 = -\frac{5}{3}(x - 8)$ or finding $c$ (e.g., $y = -\frac{5}{3}x + \frac{40}{3}$ ) and the answer.                                                                                                                                                                                                                                                                                                                                                 | (8 m<br>l gradient.<br>r as $c = \dots$                           |        |
| (a)<br>B1:<br>M1:<br>A1*:                  | Deduces that the gradient of line $l_2$ is $-\frac{5}{3}$ (accept $-\frac{5}{3}x$ )<br>Complete attempt to find the equation of line $l_2$ using $B(8,0)$ and a changed<br>If using $y = mx + c$ they must be using a changed gradient and proceed as fa<br>Clear work leading to the given answer of $5x + 3y = 40$ with no errors seen.<br>There is a requirement to "show that" so the must be at least one intermediat<br>$y - 0 = -\frac{5}{3}(x - 8)$ or finding $c$ (e.g., $y = -\frac{5}{3}x + \frac{40}{3}$ ) and the answer.<br>Condone $3y + 5x = 40$                                                                                                                                                                                                                                                                                                                       | (8 m<br>l gradient.<br>r as $c = \dots$                           |        |
| (a)<br>B1:<br>M1:<br>A1*:<br>(a) Al<br>B1: | Deduces that the gradient of line $l_2$ is $-\frac{5}{3}$ (accept $-\frac{5}{3}x$ )<br>Complete attempt to find the equation of line $l_2$ using $B(8,0)$ and a changed<br>If using $y = mx + c$ they must be using a changed gradient and proceed as fa<br>Clear work leading to the given answer of $5x + 3y = 40$ with no errors seen.<br>There is a requirement to "show that" so the must be at least one intermediat<br>$y - 0 = -\frac{5}{3}(x - 8)$ or finding $c$ (e.g., $y = -\frac{5}{3}x + \frac{40}{3}$ ) and the answer.<br>Condone $3y + 5x = 40$                                                                                                                                                                                                                                                                                                                       | (8 n<br>l gradient.<br>r as $c =$<br>re line betw                 | een    |
| (a)<br>B1:<br>M1:<br>A1*:                  | Deduces that the gradient of line $l_2$ is $-\frac{5}{3}$ (accept $-\frac{5}{3}x$ )<br>Complete attempt to find the equation of line $l_2$ using $B(8,0)$ and a changed<br>If using $y = mx + c$ they must be using a changed gradient and proceed as fa<br>Clear work leading to the given answer of $5x + 3y = 40$ with no errors seen.<br>There is a requirement to "show that" so the must be at least one intermediat<br>$y - 0 = -\frac{5}{3}(x - 8)$ or finding $c$ (e.g., $y = -\frac{5}{3}x + \frac{40}{3}$ ) and the answer.<br>Condone $3y + 5x = 40$<br><b>Iternative</b><br>Rearranges $5x + 3y = 40$ to $y = -\frac{5}{3}x +$<br>Complete attempt to show that the equation of line $l_2$ is perpendicular to $l_1$                                                                                                                                                      | (8 n<br>l gradient.<br>r as $c =$<br>re line betw                 | een    |
| (a)<br>B1:<br>M1:<br>A1*:<br>(a) Al<br>B1: | Deduces that the gradient of line $l_2$ is $-\frac{5}{3}$ (accept $-\frac{5}{3}x$ )<br>Complete attempt to find the equation of line $l_2$ using $B(8,0)$ and a changed<br>If using $y = mx + c$ they must be using a changed gradient and proceed as fa<br>Clear work leading to the given answer of $5x + 3y = 40$ with no errors seen.<br>There is a requirement to "show that" so the must be at least one intermediat<br>$y - 0 = -\frac{5}{3}(x-8)$ or finding $c$ (e.g., $y = -\frac{5}{3}x + \frac{40}{3}$ ) and the answer.<br>Condone $3y + 5x = 40$<br><b>Iternative</b><br>Rearranges $5x + 3y = 40$ to $y = -\frac{5}{3}x +$<br>Complete attempt to show that the equation of line $l_2$ is perpendicular to $l_1$<br>through $B(8,0)$ . Requires:                                                                                                                        | (8 n<br>l gradient.<br>r as $c =$<br>the line betw<br>and that it | een    |
| (a)<br>B1:<br>M1:<br>A1*:<br>(a) Al<br>B1: | Deduces that the gradient of line $l_2$ is $-\frac{5}{3}$ (accept $-\frac{5}{3}x$ )<br>Complete attempt to find the equation of line $l_2$ using $B(8,0)$ and a changed<br>If using $y = mx + c$ they must be using a changed gradient and proceed as fa<br>Clear work leading to the given answer of $5x + 3y = 40$ with no errors seen.<br>There is a requirement to "show that" so the must be at least one intermediat<br>$y - 0 = -\frac{5}{3}(x-8)$ or finding $c$ (e.g., $y = -\frac{5}{3}x + \frac{40}{3}$ ) and the answer.<br>Condone $3y + 5x = 40$<br><b>Iternative</b><br>Rearranges $5x + 3y = 40$ to $y = -\frac{5}{3}x +$<br>Complete attempt to show that the equation of line $l_2$ is perpendicular to $l_1$<br>through $B(8,0)$ . Requires:<br>• either $-\frac{5}{3}$ is the negative reciprocal of $\frac{3}{5}$ or shows $-\frac{5}{3} \times \frac{3}{5} = -1$ | (8 n<br>l gradient.<br>r as $c =$<br>the line betw<br>and that it | een    |

**(b) B1**: Deduces A(-10,0) May be awarded on the diagram as -10 or within a calculation. For the attempt to solve  $y = \frac{3}{5}x + 6$  (or e.g., 5y - 3x = 30) and 5x + 3y = 40M1: simultaneously to find the *y* coordinate of their point of intersection. May be implied, i.e., from a calculator solution which must be correct to 1d.p. They should be using the given equations but allow slips in rearranging. y coordinate of C is  $\frac{135}{17}$  (Accept awrt 7.9 for this mark) A1: dM1: Scored for a complete and correct attempt to find the exact area of triangle ABC. There may be numerical slips, e.g., in finding the x coordinates of A, but, e.g., the x and y coordinates should not be used the wrong way round. Do not allow the use of decimals in place of exact values as they cannot meet the demand of the question. See scheme using just the *y* coordinate of *C*. Another option is to use Pythagoras' theorem to find AC and BC lengths using A(-10,0), B(8,0) and their  $C\left(\frac{55}{17},\frac{135}{17}\right)$  Note:  $AC = \frac{45\sqrt{34}}{17}$  and  $BC = \frac{27\sqrt{34}}{17}$ Proceeds correctly to area  $ABC = \frac{1215}{17}$ A1: (b) Alternative – you might see the following from Further Maths candidates: B1M1A1 as above. **dM1:**  $\frac{1}{2} \begin{vmatrix} 8 & \frac{55}{17} & -10 & 8 \\ 0 & \frac{135}{17} & 0 & 0 \end{vmatrix} = \frac{1}{2} \left( 8 \times \frac{135}{17} & -10 \times \frac{135}{17} \right)$ or  $\frac{1}{2} \begin{vmatrix} 8 & 0 & 1 \\ \frac{55}{17} & \frac{135}{17} & 1 \\ \frac{-10}{0} & 0 & 1 \end{vmatrix} = \frac{1}{2} \left( 8 \times \frac{135}{17} - \frac{-10}{17} \times \frac{135}{17} \right)$ Proceeds correctly to area  $ABC = \frac{1215}{17}$ A1:

| Quest             | on Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Marks                 | AOs    |  |  |  |  |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------|--|--|--|--|
| 2 (a)             | $\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = (-8\mathbf{i} + 9\mathbf{j}) - (10\mathbf{i} - 3\mathbf{j})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M1                    | 1.1b   |  |  |  |  |
|                   | =-18i+12j                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Al                    | 1.1b   |  |  |  |  |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (2)                   |        |  |  |  |  |
| (b                | $\left  \overrightarrow{AB} \right  = \sqrt{"18"^2 + "12"^2} \left\{ = \sqrt{468} \right\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | M1                    | 1.1b   |  |  |  |  |
|                   | $=6\sqrt{13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Al                    | 1.1b   |  |  |  |  |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (2)                   |        |  |  |  |  |
| (c)               | attempt to find "p"<br>$\overrightarrow{AB} = \lambda \overrightarrow{BC} \Rightarrow -18\mathbf{i} + 12\mathbf{j} = 6\lambda\mathbf{i} + \lambda(p-9)\mathbf{j}$ with components equated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | M1                    | 2.1    |  |  |  |  |
|                   | leading to a value for $\lambda$ and to $p = \dots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |        |  |  |  |  |
|                   | (i) $p = 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Al                    | 1.1b   |  |  |  |  |
|                   | (ii) ratio = 2: 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | B1<br>(A1 on<br>EPEN) | 2.2a   |  |  |  |  |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (3)                   |        |  |  |  |  |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (7 n                  | narks) |  |  |  |  |
| Notes             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |        |  |  |  |  |
| M1:<br>A1:        | <b>Must be seen in (a)</b><br>Attempts subtraction either way round. This cannot be awarded for adding the two vectors.<br>If no method shown it may be implied by one correct component.<br>Allow as coordinates for this mark. Condone missing brackets, e.g., $-8i+9j-10i-3j$<br>are $-18i+12j$ o.e. $\begin{pmatrix} -18\\12 \end{pmatrix}$ Condone $\begin{pmatrix} -18\\12 \end{pmatrix}$<br>Do not allow $\begin{pmatrix} -18i\\12j \end{pmatrix}$ or $(-18, 12)$ or $\begin{pmatrix} -18\\12 \end{pmatrix}$ for the A1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |        |  |  |  |  |
| (b)<br>M1:<br>A1: | Attempts to use Pythagoras' theorem on their vector from part (a). Allow restarts.<br>$\left \overline{AB}\right  = \sqrt{"18"^2 + "12"^2} \left\{= \sqrt{468}\right\}$ Note that -18 will commonly be squared as 18<br>May be implied by awrt 21.6 This will need checking if (a) is incorrect.<br>cao $6\sqrt{13}$ May come from $\begin{pmatrix}\pm 18\\\pm 12\end{pmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |        |  |  |  |  |
|                   | For the key step in using the fact that <i>BCA</i> forms a straight line in an attempt to find " <i>p</i> "<br>Condone sign slips. Award, for example, for $\pm \frac{p-9}{6} = \pm \frac{2}{3}$ leading to $p = \dots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |        |  |  |  |  |
|                   | It is implied by $p = 5$ unless it comes directly from work that is clearly incorrect.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |        |  |  |  |  |
|                   | P = 0 where $P = 0$ where |                       |        |  |  |  |  |

e.g., award for an attempt to use

- $\overrightarrow{AB} = \alpha \overrightarrow{AC} \Rightarrow -18\mathbf{i} + 12\mathbf{j} = -12\alpha\mathbf{i} + \alpha(p+3)\mathbf{j}$  with components equated leading to a value for  $\alpha$  and to  $p = \dots$
- gradient BC = gradient  $BA = -\frac{2}{3}$  e.g.,  $\frac{p-9}{6} = \frac{9--3}{-8-10}$  leading to  $p = \dots$

• triangles *BCM* and *BAN* are similar with lengths in a ratio 1:3. e.g.,  $p = 9 - \frac{1}{3} \times 12$  or

$$p = -3 + \frac{2}{3} \times 12$$

• attempt to find the equation of line *AB* using both points (FYI line *AB* has equation  $y = -\frac{2}{3}x + \frac{11}{3}$ ) and then sub in x = -2 leading to p = ...

• 
$$\frac{p+3}{12} = \frac{2}{3}$$
 or  $\frac{p+3}{2} = 9 - p$  leading to  $p = \dots$ 

- A1: p=5 Correct answer implies both marks, unless it comes directly from work that is clearly incorrect.
- **B1**: States ratio = 2: 3 or equivalent such as 1: 1.5 or 22:33 Note that 3:2 is incorrect but condone {Area}AOB : {Area}AOC = 3: 2 This might follow incorrect work or even incorrect *p* For reference, area AOC = 22, area AOB = 33 and area BOC = 11

| Question     | Scheme                                                                       | Marks | AOs      |
|--------------|------------------------------------------------------------------------------|-------|----------|
| <b>3</b> (a) | (i) $x^{2} + y^{2} - 10x + 16y = 80 \Rightarrow (x - 5)^{2} + (y + 8)^{2} =$ | M1    | 1.1b     |
|              | Centre (5, -8)                                                               | A1    | 1.1b     |
|              | (ii) Radius 13                                                               | A1    | 1.1b     |
|              |                                                                              | (3)   |          |
| <b>(b</b> )  | Attempts $\sqrt{"5"^2 + "8"^2} + "13"$                                       | M1    | 3.1a     |
|              | $13 + \sqrt{89}$ but ft on their centre and radius                           | Alft  | 1.1b     |
|              |                                                                              | (2)   |          |
|              | 1                                                                            |       | (5 marks |

## (a)(i)

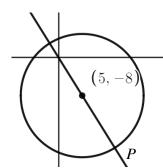
M1: Attempts to complete the square on **both** *x* and *y* terms.

Accept 
$$(x\pm 5)^2 + (y\pm 8)^2 = ...$$
 or imply this mark for a centre of  $(\pm 5, \pm 8)$ 

Condone
$$(x\pm 5)^2$$
.... $(y\pm 8)^2$  = ... where the first ... could be, or even –

A1: Correct centre (5, -8).

Accept without brackets. May be written x = 5, y = -8 (a)(ii)


A1: 13. The M mark must have been awarded, so it can be scored following a centre of  $(\pm 5, \pm 8)$ . Do not allow for  $\sqrt{169}$  or  $\pm 13$ 

## (b)

M1: Attempts  $\sqrt{5^{*}+8^{*}} + 13^{*}$  for their centre (5, -8) and their radius 13.

Award when this is given as a decimal, e.g. 22.4 for correct centre and radius. Look for  $\sqrt{a^2 + b^2} + r$  where centre is  $(\pm a, \pm b)$  and radius is r

A1ft:  $13 + \sqrt{89}$  Follow through on their (5, -8) and their 13 leading to an exact answer. ISW for example if they write  $13 + \sqrt{89} = 22.4$ 



There are more complicated attempts which could involve finding *P* by solving  $y = "-\frac{8}{5}x"$  and

 $x^2 + y^2 - 10x + 16y = 80$  simultaneously and choosing the coordinate with the greatest modulus. The method is only scored when the distance of the largest coordinate from *O* is attempted. Such methods are unlikely to result in an exact value but can score 1 mark for the method. Condone slips

FYI. Solving 
$$y = -\frac{8}{5}x$$
 and  $x^2 + y^2 - 10x + 16y = 80 \Rightarrow 89x^2 - 890x - 2000 = 0 \Rightarrow P = (11.89, -19.02)$ 

Hence 
$$OP = \sqrt{"11.89"^2 + "19.02"^2} (= 22.43)$$
 scores M1 A0 but  $OP = \sqrt{258 + 26\sqrt{89}}$  is M1 A1